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SUMMARY 
A finite difference method for the Navier-Stokes equations in vorticity+&eamfmction formulation is proposed to 
resolve the difficulty of the lack of a vorticity boundary condition at a no-slip boundary. It is particularly suitable 
for flows in regions with complicated geometries. Convergence with second-order accuracy in vorticity and 
velocity is established. In numerical experiments the convergence rates agree with theoxetical predictions. Test 
results for the two-dimensional driven cavity problem and for the flow in expansion and contraction channels are 
given. 
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1. INTRODUCTION 
The Navier-Stokes equations in streamfunction ($)+orticity (0 variables can be written in the form 

in a domain 0, where u and v are the velocity components in directions x and y respectively and Re is the 
Reynolds number. The boundary conditions usually associated with a solid wall are 

* = f 1  (4) *" =g*  (5)  

where n is the direction normal to the boundary. 
One of the computational difficulties which arises in solving the coupled equations (1x3)  is the lack 

of a vorticity condition at the solid wall. Although the use of discrete boundary conditions involving the 
(unspecified) vorticity on the wall has o h  been successful (e.g. Thorn's formula' and its higheradex 
versions), direct implementation of the two natural conditions (4) and ( 5 )  is suggested as p r e f d l e  by 
Gresho? It is argued that specifying the vorticity on the boundary does not coincide with either physical 
or mathematical reality, since the boundary vorticity is related to the interior values by some global 
constraints. These are given explicitly in Reference 2, using the fact that the system of algebraic 
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equations obtained by discretizing equations ( 1 x 5 )  with an appropriate linearization has a unique 
solution. Another form of the global constraints is given in References 3-5. 

Here we describe an approach that involves decoupling the boundary vorticity from the computation 
of the interior flow field. Then the vorticity values at the no-slip boundary are not needed to compute the 
streamfunction and vorticity values in the interior. One advantage of this approach is that the physical 
boundary conditions can be used directly. Also, flow fields that contain singularities in vorticity on the 
boundary (e.g. flows around sharp comers) can be calculated more readily, as the boundary vorticity is 
not computed explicitly. This approach has been applied successfully for various flow problems in 
References 6-9 and a similar method has been proposed by Napolitano." 

In Section 2 a description of the numerical method is given and a limited convergence analysis is 
outlined. The convergence analysis is based on discrete energy estimates, following Hou and Wetton." 
The analysis is valid for problems with smooth solutions owing to the regularity requirement of the 
solution. The generalization to a general two-dimensional domain is given in Section 3. The results of 
numerical tests for a twodimensional driven cavity and the flow in expansion and contraction channels 
are given in Section 4, including extensive comparisons with other methods. 

2. FORMULATION AND CONVERGENCE ANALYSIS 

For the convergence analysis we solve the coupled system (1x3) in a channel with a no-slip condition 
on the walls 01 = 0, 1) and periodic conditions in the xdirection. Periodicity is used here to simplify the 
proof. The boundary conditions can be written in terms of the streamfunction as 

where +o and are hct ions  of x and t. Thus the boundary condition for $ is overspecified, while no 
boundary condition is available for (. This difficulty is resolved by using the method presented here for 
the discrete finite difference approximation of (1x3) .  The semidiscrete equations are given now, 
followed by a convergence analysis. 

2.1. Semidiscrete equations 

the discretized domain is denoted by 
approximation 
difference operators that will be used are defined as 

The solution domain n is a 1 x 1 square which is covered by a uniform grid with spacing h = 1 /Nand 
= ( (xi ,  yj), xi = j h ,  8 = jh;  i ,  j = 0, . . . , N). Consider a spatial 

to r(xi,yj; t). Approximations $i , j ,  iii,j and Ei , j  are defined similarly. The 

with the operators D;,  DY_ and D: defined similarly. The difference Laplacian Ah is defined by centred 
differences as 
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The semidiscrete equations are now written as 

The no-slip conditions (6) and (7) can be discretized using an appropriate finite difference scheme. For 
example, a second-order approximation can be obtained as 

The periodic boundary conditions are 

It can be seen that no vorticity conditions are explicitly used in the discretized no-slip conditions (12) 
and (1 3). The common practice is to derive an explicit condition for vorticity rather than using (1 2) and 

Following Reference 2, a numerical procedure can be designed such that the discretized no-slip 
conditions (1 2) and (1 3) are used directly. We first observe that in principle equations (9) and (1 0) can be 
solved consistently with the boundary conditions (12H14) by appropriate linearization. No boundary 
conditions are needed for [ at a no-slip wall. We also observe that a constraint exists for the boundary 
value of [ and equation (9) needs to be satisfied a t j  = 1 and N - 1 using the present discretization. Our 
final observation is that this constraint decouples from the rest of the system, as we can solve for $ and [ 
in the intenor of ah by a marching procedure for explicit time discretizations and an iterative procedure 
for implicit time discretizations or steady state computations. Since the two procedures are similar, we 
only discuss the iteration in the following. 

We define the computational domain, Qi = ( (xi ,  yj), xi = ih, f i  = jh ;  i = 0, . . . , N, j = 1,  . . . , 
N - l}, one grid inside Qh, thephysical domain. The iterative procedure for solving (9) and (10) with an 
appropriate time discretization is now as follows. 

(13). 

1 .  Start the iteration by using equation (10) in the interior of 0; for j = 2, . . . , N - 2 and 
i = 0,. . . , N - 1.  The streamfunction value $ on a; at (j= 1 and N - 1) is obtained using both 
the no-slip boundary conditions (12) and (13) at the wall and the necessary conditions, periodic 
conditions in the present case, at the other boundaries. The resulting algebraic systems are solved 
using line Gauss-Siedel iteration. 

2. Update u and u using the strearnfhction value from step 1.  
3. Condition (lo), coupling + and 3; is then satisfied on (at j =  1 and N - 1) and used to 

calculate [ at those locations for i = 0, . . . , N - 1. 
4. The vorticity transport equation (9) is solved in the interior of Qi for j = 2,. . . , N - 2 and 

i = 0,. . . , N - 1 using the [-value on 82: (atj= 1 and N - 1) from step 3 and the necessary 
conditions, periodic conditions in the present case, at the other boundaries. Again Gauss-Siedel 
iteration is used for the linearized algebraic system. 

5. Steps 1-4 are repeated until convergence is reached. 
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The key to the success of this procedure is the fact that the $4 system is coupled. Note that wc do not 
need to know the values of [ at the no-slip walls,j = 0 and N, to compute the interior values of $ and C. 
This does not mean that the vorticity transport equation (9) is not satisfied at j = 1 and N - 1. The 
equation is satisfied in the sense that it provides a constraint for the [-values on the walls and this then 
provides an equation for finding the boundary values of [ if we are interested in knowing them 
explicitly. Thus we can leave the vorticity value ‘unknown’ on a no-slip wall, with the understanding 
that its value is not arbitrary. A practical advantage of this procedure is that it can be applied to problems 
with sharp comers on the boundary, where the vorticity value is singular, as the explicit boundaq 
vorticity value need not be displayed. 

A similar idea, using the ‘overspecified’streamfunction conditions directly, was used in Reference 10. 
However, here the streamfunction and vorticity are solved separately in the coupled discretiad system 
instead of simultaneously. It should be mentioned that the idea of applying the streamfunction 
conditions (derived from the no-slip condition) is not new. Burggnd2 introduced imaginary nodes 
outside the physical flow field in order to apply the streamfirnction conditions directly. He then used the 
value of the streamiimction on the imaginary grids to compute the voaicity value on the boundary. This 
procedure is identical with the approach used by Thorn’ if the imaginary nodes are eliminated. In 
Reference 8 this technique was used in the computation of the flow in a constricted channel. Reasonable 
results were obtained despite the singularity in the vorticity at the comer. 

There are two fundamental questions related to the numerical procedure just described that remain 
unanswered: the first concerns the optimal choice of parameters; the second concerns convergence. 
Usually, undmlaxation is necessary for step 4 to ensure convergence, with the relaxation parameter 
depending on the viscosity, grid size and time step size. However, no rigorous analysis is available for 
choosing the optimal parameter. For the linear limit of Stokes flow a rigorous analysis can be carried out 
by estimating the eigenvalues of the algebraic system and an optimal parameter can hence be calculated. 
We will not address this issue any further in this paper and the relaxation parameters used in our 
numerical tests are not optimal. Thus the issue of CPU will not be discussed when the numerical results 
are presented. Instead, we will focus our attention on the second question, i.e. whether the solution of the 
discrete system (9H14) converges to the solution of its continuous counterpart (1)-(3) witb boundary 
conditions (6) and (7). In the following we will provide a rigorous analysis to show that a convergence of 
second order is established. 

It is worth mentioning that second-order convergence is also proven for Thom’s vorticity condition in 
Reference 1 1. However, the convergence results do not show which method is more accurate in terms of 
the actual size of the errors. Since the main difference between our proposed procedure and Burggrafs 
(Thom’s) approach is the way in which Neumann Condition for $ is discretized (centred difference for 
Burggraf’s approach and one-sided for ours), one can speculate that Burggraf’s approach is more 
accurate owing to its smaller truncation error. However, we will not discuss this issue any further in this 
study. A comparison of various approaches to no-slip boundary conditions in terms of practical issues 
such as accuracy and efficiency is currently under way. 

2.2. Convergence analysis 

We first define the discrete nonns on #I;: 
N-1 N-2 

i=O j=2 
IIfllZ = h2 c cu,j>2. 
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(15) 

The following relationships result fiom the definitions (1 5): 

where f satisfiesf;,o = O,A,N = O , f ; , 2  = 4A.l andA.N-2 = 4fi,~-l. The inequality (16) holds S@ly 

A , j = h C l < k q E A , k ,  since A , O = O  and f i : j = h C 2 ~ k V D Y _ A , k + h D Y _ A , 1  =hC2<kQm.h,k+ 

because h 2 ~ , j ) 2 < l l f l l ~ ,  while (18) is the discrete P o i n d  inequality and follows from 

h/3DY_A,,. The convergence results are given M the following theorem, with the assumption that the 
exact solution of the Navier-Stokes equations is sufficiently smooth. 

Theorem 1 

The solutions to the system (9x14)  converge uniformly to the exact solutions to the Navier-Stokes 
equations with second-order accuracy: 

llC - 511, GC(T)h2, 

Ilu - i4lW <C(T)h2, Ilv - ~II, <C(T)h2. 
for all t with 0 < t < Z 

To prove this theorem, some difficulties similar to those faced by Hou and Wetton" need to be 
overcome. First, Strang's arg~ment'~ is generalized for the proof of consistency for the initial-boundary 
value problem in Lemma 1. The second lemma will give the stability bound for the proposed method 
and a combination of the two lemmas will lead to the proof of Theorem 1. 

Lemma 1 

There exists a smooth function & that is an q h 2 )  perturbation of +, 
9- I 

P=2 
$(x. Y ,  t; h) = +(x, Y ,  t )  + C h,JI%. y. 0, 

where the functions +@I and their derivatives can be bounded in terms of JI and its derivatives. It 
satisfies th? no-slip and periodicity boundary conditions (1 2 x 1  9). Furthermore, ti, which is defined 
to be -Ah+i,j in nC,, satisfies the discrete equations to any desired order of accuracy q as 

(19) 
d -  1 8 CiJ = -cis jDt ; t i ,  j + ci, j q t i ,  j + 6 A h t i ,  j + O(hQ)* 

I A 

ci.j = o'o+i.j* i. hJ . = -q'oJli,j 
inside a;, provided that the original solution JI is smooth enough. 
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The boundary values of i are not needed for computing its values on a:; they can be obtained 

By defining the error t e r n  as 
afterwards. 

- - A 

&. . = *. . - *. . e. . = c .  . - [ .  . 
1-J 1.J 1 . J ’  1 .J  1.J 1 , J ’  

we have the second lemma. 

Lemma 2 

Given T >  0 and II&(t)111,2 <hq-’I2 for 0 6 t < I; then there exists a positive number B depending 
only on T and the exact solution [ such that for all t satisfying 0 < t < I; provided that q 2 4, 

d 
- dt I Im111.2 W h 4  + II&(t)ll1.2). (21) 

Comments on the proofs of both lemmas are given in the Appendix. With these preparations we shall 
now prove the theorem. 

Proof of Theorem 1 

The theorem is proved in two steps. 

1. First, Lemma 2 implies: given T > 0, we can find a C(T) such that for all 0 < t < 
Ildl1,z < C(T)h4 (22) 

for h small enough, where C(T) - g(nT. The proof of this can be found in Reference 11, with 
‘q - 2’ there replaced- by :q - i’. 

2. From (22) we have ll$- <Chq (for C 6 1/2h”2). Using (16), the relations 

and 

on a:. From Lemma 1, Ah$i,j = (A$)i,, + O(h2) = -CJ + o(h2). By choosing q 2 4, the 
combination of Lemma 1 and (23) gives uniform second-order convergence for the vorticity in 
l-2: and the convergence for the velocity components is obtained similarly. 

3. GENERALIZATION TO OTHER DOMAINS 
Although the convergence proof in the previous section is given for a periodic channel flow problem, it 
is noted that this is a choice of convenience rather than a restriction. It is also noted that the analysis is 
not restricted to two space dimensions. An analysis for three space dimensions and other domains was 
given for Thorn’s method by Hou and Wetton. I As the only difference between the present analysis and 
that in Reference 11 is in the estimates of boundary terms, we could prove the convergence using the 
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same procedures with our boundary estimate. For the purpose of conciseness, only the analysis of a 
general two-dimensional domain is given in the following. 

Here we consider the situation where a curvilinear co-ordinate system (&, y), q(x, y)) can be set up 
to conformally map the irregular domain R* onto the periodic channel. Following Reference 11, the 
transformed equations are 

at a no-slip wall. The periodic boundary conditions are 

With the assumption of smooth J, the equivalent convergence result to Theorem 1 again follows. Notice 
that (29x34) has a similar structure to (9x14) with the smooth positive weights J l , j .  This allows us to 
prove the equivalents of Lemmas 1 and 2 in a similar way. 

4. NUMERICALTESTS 
We have established convergence of the finite difference equations for flow in a periodic channel (and 
regions that can be mapped onto a periodic channel) in the previous sections. While the solution must 
remain sufficiently smooth for the convergence analysis to hold, it is still possible to use the approach 
for other, more practical, problems. In this section we provide numerical evidence to show that the 
method can be applied to several problems with sharp comers, even though no theoretical results are 
available. Second-order convergence is still evident when the solutions are relatively smooth. 

Numerical experiments were performed with uniform grids using the methods described in the 
previous section for flows in a driven cavity and in expansion and contraction channels. The numerical 
accuracy is assessed through comparison with previously reported results. The numerical tests are 
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Table I. Driven cavity: comparison of streamhction and vorticity values at centre of primary and secondary 
vortices 

Secondary vortex Secondary vortex 
Primary vortex left right 

Re Source * c * c * c 
100 Resent 0.10336 3.16500 1.39(-6) 0.0141 9.96(-6) 0-0328 

Ghia et al. 0.10342 3.16646 1.75(-6) 0.0156 1-25(-5) 0.0331 

lo00 Present 0.11668 2.02904 2.14(-4) 0.3566 1.63(-3) 1.0304 
Ghia et al. 0.11793 244968 2.31(-4) 0.3618 1.75(-3) 1.1547 

5000 Present 0.11621 1.83445 1*30(-3) 1.3330 2.68(-3) 2.5311 
Ghia et al. 0.1 1897 1.86016 1.36(-3) 1.5306 3*08(-3) 26635 
Schreiber and Keller - - 

10,Ooo Present 0.1 1286 1.74198 1.57(-3) 1.861 1 2.66(-3) 2.8615 
Ghia et al. 0.1 1973 1-88082 1.52(-3) 2-0856 3.42(-3) 4.0531 

Schreiber and Keller 0.10330 3.18200 2.05(-6) 0.0080 1-32(-5) 0.0255 

Schreiber and Keller 0.11603 2.02600 2.17(-4) 0.3020 1-70(-3) 0.9990 

- - - - 

Schreiber and Keller 0.10284 1-62200 1.12(-3) 1.0670 2-96(-3) 3-0310 

carried out for steady state solutions only; [, is kept as a relaxation term and t loses its physical meaning 
and acts as a pure relaxation parameter. The discretized governing equations are solved following the 
iterative procedure described in Section 2. Centred differences are used unless specified otherwise. 

4.1. Two-dimensional driven cavity problem 

The flow in a driven cavity is used as the first test problem. The fluid is confined in a 1 x 1 square 
cavity driven by the top wall moving with velocity u = 1, while the other walls are at rest. This problem 
is recognized as a standard test case for assessing the efficiency and accuracy of the numerical 
simulation of the Navier-Stokes equations. This is because it contains some general characteristics such 
as recirculation, while the geometry and boundary conditions are relatively simple and well-defined. 
Extensive results have been published on the subject in the last 10 years. 

The computations in this case were carried out for Re = 100,1000,5000 and 10,000 with a 129 x 129 
grid for a direct comparison with the results of Ghia et aZ.14 and Schreiber and Keller.'s Table I shows 
that the present results for the primary vortex and minimum streamfunction have at least two or three 
digits in agreement with most of the results obtained by previous investigators. The velocity 
components along the vertical and horizontal lines through the cavity centre are presented in Tables 
H(a) and II(b) respectively for Re= 1000, 5000 and 10,000. They also show reasonably good 
agreement. It can be seen from Table I that the vorticity results start to show some discrepancy 
between the present prediction and those by Ghia et al.14 and for Re 3 5000, especially for the 
secondary vortices. This indicates that the accuracy at high Reynolds number is still an open question, 
because the comer singularities result in a large gradient of voIticity near the wall. 

Thecalculationswerealsocompletedfor61 x61,81 x81 and 101 x 101 gridsatRe=lOOandlOOO 
to assess the convergence rate a. An analytical solution in this case is not available. Thus the 
convergence rate is calculated using three different grid sizes h, ,  h2 and h3 as 
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Table 11. Driven cavity: (a) comparison of v-velocity component along vertical line through cavity centre; (b) 
comparison of welocity component along horizontal line through cavity centre 

(a) Re= lo00 Re = 5000 Re = 10,000 

Gridpoint y-Location Present Ghia Present Ghia Present Ghia 
et al. et al. et al. 

129 
126 
125 
124 
123 
110 
95 
80 
65 
59 
37 
23 
14 
10 
9 
8 
1 

1 *oo00 
0.9766 
0.9688 
0.9609 
0.953 1 
0435 16 
0.7344 
0.6 1 72 
0.5000 
0.453 1 
0.28 13 
0.1719 
0.1016 
0.0703 
04625 
0.0547 
O.oo00 

1 ~OOOO 
0.6590 
0.5749 
0.5133 
0.4663 
0.3324 
0. I063 
0.0563 

-0,0613 
-0.1068 
-0.2777 
-0.3826 
-0.2953 
-0.2 199 
-0.1998 
-0.1791 
O.oo00 

1 ~oooo 
0.6593 
0.5749 
0.51 12 
0.4660 
0.3330 
0.1872 
0.0570 

-0.0608 
-0.1065 
-0.2781 
-0.3829 
-0.2973 
-0.2222 
-0.2020 
-0.1811 
O.oo00 

1 .OOOo 
0.47 19 
0.4499 
0449 1 
0.4502 
0.3306 
0.1941 
0.0775 

-0.0295 
-0.071 1 
-0.2223 
-0.32 12 
-0.3996 
-0.4246 
-0.4154 
-0,3971 
O~oooO 

1 -oo00 
0.4822 
0.4612 
0.4599 
0.4604 
0.3356 
0.2009 
0.08 18 

-0.0304 
-0.0740 
-0.2286 
-0.3305 
-0.4044 
-0.4364 
-0.4290 
-0.41 17 
O.oo00 

1 ~oo00 
0.4442 
0.4510 
0.4540 
0.45 15 
0.3 198 
0.1906 
0.0797 

-0.0223 
-0.0621 
-0.2078 
-0,3035 
-0.3684 
-0.4 12 1 
-0.4245 
-0.4312 

0.oooO 

1 ~oo00 
0.4722 
0.4778 
0.4807 
0.4780 
0.3464 
0.2067 
0.0834 

-0.03 1 1 
-0.0754 
-0.23 19 
-0.3271 
-0.3800 
-0.4166 
-0.4254 
-0.4274 
O.oo00 

(b) 

Grid pint x-Location 

Re=1000 

Present Ghia 
et al. 

129 
125 
124 
123 
122 
117 
1 1 1  
104 
65 
31 
30 
21 
13 
1 1  
10 
9 
1 

1 *oo00 
0.9688 
0.9609 
0.953 1 
0.9453 
0.9063 
0.8594 
0.8047 
0*5OOo 
0.2344 
0.2266 
0.1563 
0.0938 
0.078 1 
0.0703 
0.0625 
O.oo00 

O.oo00 
-0.2273 
-0.2910 
-0.3514 
-0.4054 
-0.5192 
-0.42 15 
-0.3159 
0.0265 
0.3222 
0.3306 
0.3707 
0.3261 
0.3032 
0.2897 
0.2742 
O.oo00 

O.oo00 
-0.2 139 
-0.2767 
-0.3371 
-0.3919 
-0.5 155 
-0.4267 
-0.3 197 
0.0253 
0.3224 
0-3308 
0.3710 
0.3263 
0.3035 
0.2901 
0.2749 
O.oo00 

Re = 5000 

Resent Ghia 
et al. 

0.oooO 0.oooO 
-0.5105 -0.4977 
-0.5489 -0.5507 
-0.5434 -0.5541 
-0.5152 -0.5288 
-04098 -0.4144 
-0.3568 -0.3621 
-0.2928 -0.3002 
0.0147 0.0095 
0.2690 0.2728 
0.2768 0.2807 
0.3488 0.3537 
0.4175 0.4295 
0.4 194 0.4365 
0.4135 0.4333 
0.4023 0.4245 
O-oooO O.oo00 

Re = 10,OOo 

Present Ghia 
et al. 

O.oo00 O.oo00 
-0.5481 -0.5430 
-0.5121 -0.5299 
-0.4732 -0.4910 
-04474 -0.4586 
-0.3963 -0.4150 
-0.3396 -0.3674 
-0.2778 -0.3072 
0.0151 0.008 1 
0.2535 0.2722 
0.2608 0.2800 
0.3276 0-3507 
0.3934 0.4149 
0.41 16 0.43 12 
0.4177 0.4373 
0.4190 0.4398 
O.oo00 O~oooO 

Fc, , Fc2 and Fc3 are numerical solutions for grid sizes h l ,  h2 and h3 respectively and are evaluated on the 
same grid point. Table I11 presents the convergence rates for the sequence of solutions that approach the 
actual solution. It can be seen that the computed convergence rates for both vorticity (ac) and 
streamfunction (as) values are below the value two, which is the theoretical value for convergence of 
second order, although they approach two when the grids are refined. This shows that second-order 
convergence is not reached on all grids tested. The reason is that the vorticity is singular at comers and 
this singularity contaminates the overall solutions. A similar test using a smoother velocity profile 
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Table 111. Convergence rate test of solutions of driven cavity flow 

Grid numbers Re @!b QC 

40-60-80 100 1.213 1.642 
6&8&100 100 1.421 1.685 
80-100-120 100 1.555 1.707 

Table IV Convergence rate test of solutions of driven cavity flow with 
smooth velocity profile u =?(I - x)' at driven wall 

Grid numbers Re Q!b QC 

40-60-80 100 1.954 1.913 
60-80-100 100 2.126 1.938 

u =-$( 1 - x)' at the driven wall shows that the second-order convergence rate is reached for both 
streamfunction and vorticity values (Table IV). 

The streamline plots in Figure 1 show the development of a central, nearly circular vortex with 
bottom secondary vortices. For Re = 5000 a third secondary vortex near the top left comer is present, 
while for Re = 10,000 a tertiary vortex in the bottom right region appears. This is consistent with the 
results of Ghia et The contour plots in Figure 2 show a centre region of essentially constant 
vorticity surrounded by a nearly circular, thin region of highly oscillatory vorticity. Mesh frequency 
oscillations near the downstream top comer are evident at Re = 5000, earlier than those observed by 
Ghia et u1.,I4 since a coarser grid is used in the present computation. This is expected, as the mesh with 
centred differences is not sufficiently fine to resolve the boundary layer. 

4.2, Flow in an expunsion channel 

The flow in an expansion channel was chosen by the organizers of a GAMM workshop as a standard 
test case for comparing the performance of codes for solving the incompressible Navier-Stokes 
equations16 because of its simple geometry. The flow in an expansion channel proves to be a good test 
case also because of its interesting features. All codes produce a vortex at the same separation point and 
the prediction of the position of reattachment then presents a challenge for the performance of any 
numerical algorithm. As pointed out by Momson and Napolitano," most methods face convergence 
difficulties when Re > 500. This is because the flow structure becomes more complicated physically 
when Re increases, as shown clearly by the carell experiments of Armaly er uZ.'* Another challenge 
presented by this problem is the downstream flow condition. Proper outflow conditions must be 
provided to ensure the convergence of the solution procedure. Morgan et ~ 1 . ' ~  have discussed this point 
in detail. 

In the present study, results are obtained for a step size equal to half the height of the channel, which is 
assumed to be 2. The length of the channel is chosen to be 30. Let L1 be the horizontal distance between 
the reattachment point of the primary vortex at the lower wall and the step (where the separation occurs). 
There is also a secondary vortex at the top wall when the Reynolds number increases. Let & be the 
separation point of the secondary vortex and L3 the reattachment point of the secondary vortex at the top 
wall. 

The computation was carried out on a uniform 201 x 101 grid over a 15 x 1 domain. Figure 3 present 
contours of the streamfunction for Re = 200, 400, 600 and 800. It can be seen that the size of the 
recirculation region increases with the Reynolds number. At Re = 600 and above a secondary vortex 
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Figure 1. Streamline contours for driven cavity flow: (a) Re = 100; @) Re = 1000; (c) Re = 5000; (d) Re = 10,oOO 

(a) (b) 

Figure 2. Vorticity contom for driven cavity flow: (a) Re= 100; (b) Re= IOOO; (c) Re = 5ooO; (d) Re= 10,OOO 
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Table V Comparison of separation and reattachment points for flow in expansion channel 

H. HUANG AND B. R SEYMOUR 

Armaly et al. Morrison and Napolitano Present 

Re L1 L2 L3 L1 L? L3 L1 L2 L3 
200 
400 8.6 - - 8.6 8 .o 10.4 8.7 8.0 10.4 
600 11.5 - - 10.7 8.7 16.2 10.8 8.8 16.2 
800 14.3 - - 12.2 9.7 21.0 12.3 9.8 21-0 

- - - - - 5.3 - 5.4 - 

develops at the top wall. Second-order accuracy was obtained by setting the parameter ai, = Ay using 
the single-step upwind scheme.” Table V presents a comparison of the separation and reattachment 
points Li between the present calculation and the results of Armaly et d.’* and Modson and 
Napolitano.” The agreement is reasonably good between the two numerical predictions. A possible 
reason for the discrepancy at Re = 800 between the experiment and the numerical results may be the 
instability of the flow when the Reynolds number becomes large, as mentioned in Reference 18. 

F i p  3. Streamline contours for flow in expansion channel: (a) Re = 200; (b) Re = 400, (c) Re = 600, (d) Re = 800 
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Table VI. Reattachment point of tip comer vortex measured 
from comer (Re = 500)  

Dennis and Smith Not detected 
Hawken et al. 0.440 
Kamgeorghis and Phillips 0995 
Present (transformation) 0.430 
Present (Cartesian) 0.444 
Burggrafk method 0.4 15 

4.3. Flow in a contraction channel 

Flow in a contraction channel is a more difficult test problem in the sense that the separation after the 
contraction is difficult to compute accurately, as shown in Reference 8. Although vorticity singularities 
are present in the driven cavity and expansion channel, one does not need to deal with them explicitly 
using the finite difference approximation, since the comer values are not needed for computation. In the 
contraction channel, however, the vorticity value at the tip comer is needed using a conventional 
approach. Special techniques have to be used to estimate the vorticity values near the comer:’ while 
some investigators took a semianalytical approach by using the local solutions obtained in Reference 2 1. 
Our solution procedure does not need the vorticity values on the solid wall, which makes it more readily 
applicable to this and similar problems. We refer interested readers to Reference 8 for a detailed 
discussion. Only a typical test case is cited here. The channel width is assumed to be 2 before the step 
and 1 afier the step. The lengths are 2 before and after the step. The computation is only carried out on 
half the channel because of the symmetry. 

Figure 4 shows the streamline contours for Re = 500 (based on the channel width before the step.) 
Separation regions before and after the step are apparent. Most of the previous investigators in the 
literature were able to predict the separation before the step reasonabiy well. However, large 
discrepancies exist in the predictions of the separation region after the tip comer. Table VI presents 
the results of the computed reattachment point for the tip comer separation. The first three rows are the 
results h m  previous investigations. Large discrepancies are apparent. Our numerical results using both 
a Cartesian grid and a transformation are consistent and close to that of Hawken ef al.:’ where a 
primitive variable formulation is used so that the explicit treatment of the vorticity singularity is avoided. 

Figun 4. Streamline contours for flow in contraction channel (Re = 500): (a) close-up view at salient comcr, (b) close-up view of 
separation aAcr tip comer, (c) o v d l  view 
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The prediction using Burggraf€’s 
than that of Karageorghis and Phillips, 

cell is somewhat lower, but much closer to those of ours 
where a spectral element method was used. 

5 .  CONCLUSIONS 

A method for resolving the lack of an appropriate vorticity boundary condition at a solid wall for certain 
finite difference algorithms has been presented, together with a convergence analysis for simplified 
situations. The structure of the convergence proof is similar to that of Hou and Wetton” for Thorn’s 
first-order vorticity boundary condition. 

Accurate numerical results are obtained for several test problems and these are compared with many 
previous results. The numerical experiments also confirmed the second-order accuracy predicted by the 
convergence analysis. Although the numerical experiments are carried out for two-dimensional 
problems with simple geometries, the method is suitable for solving problems with more complex 
geometries. Successful calculations have been carried out for flows in irregular geometries, such as 
blood flow in constricted arteries.’ The method is particularly suitable for problems with comer 
singularities and the results are in good agreement with those using other methods.’ 
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APPENDIX 
Since the proofs of both lemmas are similar to those in Reference 1 1, we will only describe briefly the 
structure of our proofs. Interested readers are referred to Reference 1 1. 

Comments on pmof of Lemma 1 

 his lemma is proven in a constructive way, i.e. an approximate solution $(x, y, t ;  h)  is constructed 
such that it satisfies Lemma 1. To construct an approximation to the exact solution $(x, y, I) of order q, 
we consider an expansion similar to St~ang:’~ 

The procedure to determine each function $@I is the same as in Reference 1 1, by considering the interior 
and boundary conditions separately. 

Equations for $@I. It is expected from Lemma 1 that $ will satisfy equation (19). By rearranging the 
equation accordmg to the order of h, a series of equations is obtained for each function $@I. For 
example, a pth-order equation is 

where X@), Y@) and F@) are linear combinations of I,+(‘) with r c p .  

Boundary conditions for I,@). The boundary conditions for 6 are the physical conditions (e.g. at 
y = 0): 

4 i , 1  - &i.z - G i , 0  = 0- (38) 
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An expression in continuous form can be obtained using a Taylor expansion as 

Inserting equation (36) into equations (38) and (39) and rearranging the terms yields boundary 
conditions. For example, the pth-order boundary conditions are 

Similar boundary conditions are derived at y = 1,  while the periodic condition will be valid for each 
function in the x-direction, i.e. x = 0 and 1. 

Discussion of solution $". The system of equations for $b) can be solved inductively fiomp = 0 to 
any desired orderp = q. The equation and boundary conditions for the zeroth order ($('I) are identical 
with the original Navier-Stokes equations. Thus = +. The boundary condition for the first-order 
functin $(l) is homogeneous, so the solution is $(l) = 0. This is as we expected, since the exact 
solution should not contain the first-order correction. If all the compatibility conditions for initial data 
are satisfied to ensure the smoothness of the solution at t = 0, the expansion $ has the properties 
required in Lemma 1. 

Comments on pmof of l emma 2 

The proof of Lemma 2 is carried out by providing a bound for the discrete energy. Only the 
homogeneous boundary conditions are considered, since the non-homogeneous case can be proved 
similarly. Subtracting equation (9) from equation (19) on a;, we obtain 

-- - k i ,  j 

dt 

1 
-k Re Ahei.j 

+ O(hq). (49) 
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The terms (41)-(49) are multiplied by h 2 q j  and summed over a;. Then, using summation by parts and 
the boundary conditions for E, they are evaluated term-by-term using ti,,, = E ~ . N  = 0, ci,2 = 4 ~ ; , ~ ,  
E ~ , ~ - ~  = 4Ei.N-I and the two identities 

and 

N - l  

Again the procedure is similar to that in Reference 1 1 .  The difference arises from the estimates of the 
boundary terms but can be estimated in a similar fashion. We will present the estimates for each term 
without detailed derivation and refer interested readers to Reference 1 1. 

Firstly we have 

instead of an equal sign in Reference 1 1. The estimates for the non-linear terms (42) and (45) are much 
simpler here, since no boundary terms appear using our boundary condition. The interior terms are 
bounded by brute force l l ~ l ) ~ , ~  <hs for 0 < t < Tas 

(54) 

by using the Cauchy-Schwaxz inequality, where K is a constant. The linearized convection terms are 
bounded owing to the fact that P,,A,,I/I;,~ is bounded. Since the boundary terms do not appear, the 
estimates for (43) and (46) are the same as in Reference 11: 

2 (421, (45) 6 Kll4ll.Z 

(4319 (46) < m l l : , 2 .  (55 )  

The estimates for (44) and (47) are the most cumbersome, as it is necessary to evaluate some of the 
boundary terms. After lengthy manipulation and the use of the boundary condition we obtain 

( 4 4 ) 9  (47) G K ll&ll:,2. 

(48) = -llEll2.2. 

(56) 

The diffusion term is evaluated assuming Re = 1 for convenience: 

(57) 2 

Finally, 

Combining these yields 
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or 
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